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Abstract. The Rio Grande River of west Texas contains by far the largest infestation of saltcedar
(Tamarix spp.) in Texas. The objective of this study was to evaluate airborne hyperspectral
imagery and different classification techniques for mapping saltcedar infestations.
Hyperspectral imagery with 102 usable bands covering a spectral range of 475 to 845 nm was
acquired from two sites along the Rio Grande in west Texas in December 2003 and 2004 when
saltcedar was undergoing color change. The imagery was transformed using minimum noise
fraction and then classified using six classifiers: minimum distance, Mahalanobis distance, maxi-
mum likelihood, spectral angle mapper, mixture tuned matched filtering, and support vector
machine (SVM). Accuracy assessment showed that overall accuracy varied from 71% to
86% in 2003 and from 80% to 90% in 2004 for site 1 and from 60% to 76% in 2003 and
from 77% to 91% in 2004 for site 2. The SVM classifier produced the highest overall accuracy,
as well as the best user’s and producer’s accuracies for saltcedar among the six classifiers. The
imagery taken in early December 2004 provided better classification results than that in mid-
December 2003. Change detection analysis based on the classification maps quantified the class
changes between the two years. These results indicate that airborne hyperspectral imagery incor-
porated with image transformation and classification techniques can be a useful tool for mapping
saltcedar infestations. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.7.073556]
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1 Introduction

Saltcedar (Tamarix spp.), a perennial shrub or tree, was introduced to the United States from
Europe and Asia in the 1800s for ornamental use and erosion prevention.1 Although multiple
species of saltcedar exist in the United States, the largest saltcedar invasion consists of two
morphologically similar deciduous species, Tamarix chinensis and Tamarix ramosissima,
and their hybrids.2 These saltcedar species are invaders of riparian sites in the southwestern
United States and northern Mexico and they form dense, low thickets that displace native
plant communities, degrade wildlife habitat, increase soil salinity and wildfires, reduce water
available for agriculture and municipalities, and reduce recreational use of affected areas.3,4

Saltcedar communities are also much less valuable for wildlife than the native riparian commun-
ities they displace.5,6

Since saltcedar was introduced to the United States, it has escaped nearly all of its biological
enemies and has proven difficult to control on a large scale by either manual or chemical meth-
ods.7 In recent years, biological control has been investigated as a mechanism for the control of
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saltcedar. After extensive host-specificity testing, small leaf-feeding beetles (Diorhabda spp.)
from the native range of saltcedar species in China and Kazakhstan were released and first estab-
lished in Nevada, Utah, Colorado, andWyoming to provide good control at little cost and with no
damage to any other plants, while closely related Diorhabda beetles from Greece, Tunisia and
Uzbekistan now are beginning to provide good biological control in Texas.8–12

One of the important tasks for effective control of saltcedar is to map its distribution and quan-
tify the infested areas. Remote sensing has the potential for this purpose. Several studies have been
conducted on the use of remote sensing to distinguish saltcedar. Everitt and Deloach13 described
the spectral light reflectance characteristics of saltcedar and demonstrated the use of normal color
aerial photography for distinguishing infestations in Texas riparian areas. Everitt et al.14 used nor-
mal color aerial videography to detect and map saltcedar infestations on three river systems in the
southwestern United States. More recently, Everitt et al.15 integrated aerial videography and pho-
tograph with global positioning system (GPS) and geographic information system technologies
for mapping the distributions of saltcedar infestations along the Rio Grande River in west Texas
and found that approximately 460 river-km of the Rio Grande from Lajitas to near El Paso was
infested by saltcedar. Akasheh et al.16 used airborne multispectral digital imagery to map saltcedar
and other riparian vegetation along the middle Rio Grande River in New Mexico and supervised
classification results showed that multispectral imagery could accurately separate saltcedar from
associated vegetation species with an overall accuracy of 88%. Narumalani et al.17 evaluated air-
borne imaging spectrometer for applications (AISA) hyperspectral imagery in conjunction with
Interactive Self-Organizing Data (ISODATA) and spectral angle mapper (SAM) for mapping salt-
cedar in the Lake Meredith Recreational Area in Texas and accuracy assessment results showed
that SAM (83%) provided a better accuracy than ISODATA (76%). More recently, Narumalani
et al.18 used AISA hyperspectral imagery to map four dominant invasive plant species, including
saltcedar, Russian olive, Canada thistle, and musk thistle along the flood plain of the North Platte
River, Nebraska. Remote sensing is also a useful tool for assessing biological control of saltcedar.
Anderson et al.19 successfully detected beetle-damaged saltcedar using compact airborne spectro-
graphic imager (CASI) hyperspectral imagery in Nevada. Everitt et al.20 also successfully iden-
tified saltcedar trees damaged by leaf-feeding beetles in Texas. Dennison et al.21 demonstrated the
potential of advanced spaceborne thermal emission and reflection radiometer (ASTER) and mod-
erate-resolution imaging spectroradiometer (MODIS) satellite data for monitoring defoliation
caused by Diorhabda beetles in Utah.

Despite the success of mapping saltcedar in the reported studies, saltcedar classification from
remotely sensed imagery is not always easy. In west Texas, saltcedar leafs out in mid-April and
has a similar color to associate plant species, such as mesquite, during much of the year.
However, mesquite will start defoliating in late November, while saltcedar changes from
green to orange to yellow and then to a brown color before defoliation within a three- to
four-week period from late November to late December.13 Therefore, it may be advantageous
to use this unique phenology of saltcedar to distinguish it from associated plant species. The
objectives of this study were to evaluate airborne hyperspectral imagery and different classifi-
cation techniques for mapping saltcedar infestations during this phenological stage.

2 Methods

2.1 Study Area

Two representative study sites with mixed vegetation types, designated as site 1 and site 2, were
selected from a saltcedar-infested area in Candelaria along the Rio Grande in west Texas. The
longitude and latitude coordinates near the centers of the sites were (104°41’08” W, 30°06’53”
N) for site 1 and (104°41’31” W, 30°07’50” N) for site 2. Saltcedar occurs in association with
mixed woody species including western honey mesquite [Prosopis glandulosa var. torreyana
(L. D. Benson) M. C. Johnst], seepwillow [Baccharissalicifolia (H. Ruiz Lopez and J. Pavon)
C. Persoon], huisache [Acacia minuata (M. E. Jones) P. de Beauchamp], and mixed herbaceous
species on both sites. There existed a large area of Bermuda grass (Cynodondactylon L.) at site 1
and patches of four-wing saltbush [Atriplexcanescens (F. Pursh) T. Nuttall] were found along the
river at site 2.
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2.2 Acquisition of Hyperspectral Imagery

A hyperspectral imaging system described by Yang et al.22 was used to acquire images from the
two sites. The system consisted of a digital CCD camera integrated with a hyperspectral filter and
a PC equipped with a frame grabbing board and camera utility software. The camera was sen-
sitive in the 280- to 1000-nm spectral range and has 1280ðhÞ × 1024ðvÞ pixels. The effective
spectral range of the system was from 457.2 to 921.7 nm. The camera was configured to acquire
12-bit images with 128 spectral bands and a swath of 640 pixels.

A Cessna 404 twin-engine aircraft with a camera port in the floor was used as the platform for
image acquisition. The hyperspectral imaging system was mounted on a light aluminum frame
along with a three-camera multispectral imaging system. The three-camera system was used as a
viewfinder to locate the target since the hyperspectral system captured one 640-pixel line at a
time across the flight direction and did not provide a view of the imaging area. No stabilizer or
inertial measurement device was used to damper or measure platform variations, but care was
taken to minimize the effects of winds and changes in the aircraft’s speed and flight direction.
The aircraft was stabilized at a predetermined altitude of 1980 m (6500 ft) above ground level, a
speed of 178 km∕h (110 miles∕h), and a flight direction along the straight road within each site
before the start of image acquisition and was maintained at the same altitude, speed, and direc-
tion during the course of image acquisition. A square ground pixel size of 1.56 m and a ground
swath of 1000 m were achieved. Hyperspectral imagery was acquired between 1200 and 1300 h
Central Standard Time on December 16, 2003, and December 1, 2004, under sunny and calm
conditions.

2.3 Image Geometric Correction and Radiometric Calibration

The geometric distortions due to movements in the across-track direction and variations in roll
were corrected using a reference line approach described by Yang et al.22 The geometrically
restored hyperspectral images for the two sites were rectified to a geo-referenced QuickBird sat-
ellite image using a nonlinear rectification technique known as rubber sheeting. The satellite image
was acquired on November 25, 2004 and rectified to the Universal Transverse Mercator (UTM),
World Geodetic Survey 1984 (WGS-84), Zone 14, coordinate system based on a set of the ground
control points located with a submeter-accuracy GPS Pathfinder Pro XRS receiver (Trimble
NavigationLimited, Sunnyvale, California). For radiometric calibration, four 8- by-8-m tarpaulins
with nominal reflectance values of 4%, 16%, 32%, and 48%, respectively, were placed in the study
area during image acquisition. The actual reflectance values from the tarpaulins were measured
using a FieldSpec HandHeld spectroradiometer (Analytical Spectral Devices, Inc., Boulder,
Colorado). The spectroradiometer was sensitive in the visible to near-infrared (NIR) portion
of the spectrum (325 to 1075 nm) with a spectral resolution of approximately 3 nm. The rectified
hyperspectral images were converted to reflectance based on 128 calibration equations (one for
each band) relating reflectance values to the digital count values on the four tarpaulins. All pro-
cedures for image rectification and calibration were performed using ERDAS IMAGINE
(Intergraph Corporation, Madison, Alabama). Because the camera had low quantum efficiency
near the NIR end of the observed spectrum, the reflectance values for wavelengths greater than
846 nm were not reliable. In addition, the first few bands in the blue region appeared to be noisy.
Therefore, bands 1 to 5 and 108 to 128 (a total of 26 bands) were removed from each hyperspectral
image and the remaining 102 bands were used for analysis.

2.4 Image Transformation, Classification and Accuracy Assessment

The minimum noise fraction (MNF) transformation implemented in ENVI (Research Systems,
Inc., Boulder, Colorado) was used to reduce the spectral dimensionality and inherent spectral
noise in the hyperspectral imagery.23 Based on the eigen value plots and visual inspection of the
MNF band images, the first 20 bands from the transformed MNF images were selected for image
classification.24

Based on ground observations, site 1 consisted of five major cover types, including
saltcedar, mesquite mixed with small numbers of huisache and seepwillow species, Bermuda
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grass, soil/sparse herbaceous species, and wet areas/water. Saltcedar and mesquite were the dom-
inant woody species at site 1 and Bermuda grass occupied a significant portion of the site. Site 2
contained six major classes: dense saltcedar, sparse saltcedar, mixed woody species (mesquite,
huisache, and four-winged saltbush), seepwillow, bare soil/sparse herbaceous species, and water.
Saltcedar was the dominant woody species at site 2 and had two different levels of density.
Continuous patches of seepwillow and four-winged saltbush also existed at this site. For super-
vised training, different numbers of areas, or regions of interest with known cover types were
selected and digitized on each image as the training samples to represent respective classes or
endmembers. These training areas were first verified on the ground with the aerial photographs
and then selected on the hyperspectral images as training samples. The numbers of digitized
training pixels ranged from 428 to 1934 among the classes for site 1 and from 83 to 3560
for site 2. A boundary was defined for each site to exclude the areas outside the boundary
for image classification.

Fig. 1 Normal color and color-infrared (CIR) composite images derived from hyperspectral
images taken in 2003 and 2004 for a saltcedar-infested site (site 1).
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Six supervized classification methods including minimum distance, Mahalanobis distance
(MAHD), maximum likelihood, SAM, mixture tuned matched filtering (MTMF), and support
vector machine (SVM) were applied to the two MNF images. The minimum distance classifier
uses the class means derived from the training data and assigns each pixel to the class that has the
closest Euclidean distance from the pixel.25 The MAHD method is similar to minimum distance,
except that the covariance matrix is used in the calculation.26 Each pixel is assigned to the class
for which MAHD is the smallest. The maximum likelihood classifier calculates the probability
that a given pixel belongs to a specific class and assigns the pixel to the class that has the highest
probability.27 MTMF is a spectral unmixing technique that maximizes the response of the
defined endmembers on each endmember abundance image.28 The matched filtering score
images were classified into the classes based on maximum abundance values. The SAM clas-
sifier assigns pixels to the classes based on minimum spectral angles,29 while the SVM classifier
is a kernel-based machine learning technique that builds a model to predict which class a pixel
belongs to.30 The 2003 and 2004 MNF images for the two sites were classified using the six
classification techniques. Since some of the classes at both sites were relatively small, they were
merged to another class for accuracy assessment. The portions of the river at both study sites
were narrow (4 to 7 m) and the trees growing along the banks of the river also covered part of the

Fig. 2 Normal color and CIR composite images derived from hyperspectral images taken in 2003
and 2004 for a saltcedar-infested site (site 2).
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river, resulting in small water surface areas. The wet areas change with rainfall. When it is dry,
the wet areas become grass areas. Therefore, water and the wet areas at site 1 were merged with
Bermuda grass as one class. At site 2, water was merged with bare soil/sparse herbaceous as a
mixed class, and seepwillow was merged with other mixed woody species as one class. Thus, the
classification maps for each site had four classes, though the four classes were different between
the two sites.

For accuracy assessment of the merged classification maps, 100 points were generated and
assigned to the classes in a stratified random pattern for each site. The UTM coordinates of these
points were determined and the GPS receiver was used to navigate to these points for ground
verification. Error matrices for each classification map were generated by comparing the clas-
sified classes with the actual classes at these points. Overall accuracy, producer’s accuracy, user’s
accuracy, and kappa coefficients were calculated based on the error. Kappa analysis was also
performed to test if each classification was significantly better than a random classification and if
any two classifications were significantly different.31 Change detection analysis was performed
on the classification maps to determine the class changes between the two years.

3 Results and Discussion

Figure 1 shows the normal color and color-infrared (CIR) composite images derived from the
102-band hyperspectral images taken in December 2003 and 2004 for site 1. By December, most
of the mesquite trees had defoliated and most saltcedar changed color from green to yellow to
brown. Therefore, mesquite looked dark green to dark brown on the color images and dark red-
dish on the CIR images, whereas saltcedar looks yellow green to dark brownish on the color

Fig. 3 Five-class classification maps generated from minimum noise fraction (MNF) images
based on the support vector machine (SVM) classifier, as well as the four-class maps after
the grass class and the water/wet areas class were merged for site 1.
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images and dark to dark reddish on the CIR images. Most saltcedar already changed to brownish
by December 16, 2003.

In comparison, most saltcedar were changing color from yellow to brown by December 1,
2004, while most mesquite trees had defoliated by this date. It appears that the early December
image provided better separation between saltcedar and mesquite than the mid-December image.
The best distinction between saltcedar and mesquite can be clearly seen on the 2004 CIR image.
Bermuda grass and other herbaceous species were senesced and they had a grayish to whitish
color on the images. The wet areas had a bluish tone on the CIR images.

Figure 2 shows the normal color and CIR composite images derived from the 102-band
hyperspectral images taken in December 2003 and 2004 for site 2. Similarly, saltcedar looked
brownish in 2003, while it had a green to orange tone in 2004. A few patches of seepwilow
occurred near the northwest edge of the site. It looked dark green on the color image and
dark red on the CIR image. Saltbush existed along the river close to the southwest corner of
the site. It had a greenish and bluish color on the color image and a pinkish and reddish
color on the CIR image.

Figure 3 presents the five-class classification maps from the 20-band MNF image based on
the SVM classifier for site 1. The merged four-class maps are also shown in the figure. Similarly,
Fig. 4 shows the six-class classification maps from the 20-band MNF images based on SVM as
well as the merged four-class maps for site 2. Avisual comparison of the classification maps with
the color and CIR images indicates that the cover types at each site were generally well separated
on these classification maps.

Table 1 summarizes the accuracy assessment results for the classification maps generated
from the 20-band MNF images based on the six classification methods for site 1. Overall accu-
racy for 2003 was 71% for minimum distance, 75% for maximum likelihood, 76% for both SAM
and MTMF, and 86% for SVM. Kappa analysis showed that all the classifications were

Fig. 4 Six-class classification maps generated from MNF images based on the SVM classifier, as
well as the four-class maps after seepwillow and mixed woody species were merged as the mixed
woody class and soil/sparse herbaceous species and water were merged as the mixed cover
class for site 2.
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significantly better than a random classification and that SVM performed significantly better
than the other five classifiers, which provided essentially the same overall accuracy. For
2004, SVM provided the highest overall accuracy (90%), followed by MAHD and MTMF
(89%), maximum likelihood (87%), and SAM (80%). Between the two years, the 2004 imagery
provided better classification results than the 2003 imagery. This was partially due the fact that
the 2004 imagery was taken when saltcedar was still changing color from green to yellow to
brown, while saltcedar already changed to brown in 2003. When saltcedar changes color to
brown, it starts losing its leaves and has a dark brownish appearance similar to defoliated mes-
quite. Therefore, imagery should be taken before saltcedar changes to brown for better
separation.

For 2003, SVM had a producer’s accuracy of 88% and a user’s accuracy of 92% for saltcedar
and was the best classifier for differentiating saltcedar from the other cover types. The other five
classifiers had good user’s accuracy values of 81% to 100% and relatively low producer’s accu-
racy values of 56% to 73% for the same year, indicating large areas of saltcedar were misclas-
sified as the other cover types, especially as mesquite. For example, MTMF had a producer’s
accuracy of 68% and a user’s accuracy of 90% for saltcedar. These values indicate that although
90% of the areas called saltcedar on the classification map were actually saltcedar, only 68% of
the saltcedar areas on the ground were correctly identified as saltcedar on the map.

For 2004, SVM had a producer’s accuracy of 90% and a user’s accuracy of 97% for saltcedar
and again was the best classifier for differentiating saltcedar from the other cover types.
Minimum distance, MAHD, maximum likelihood and MTMF also had good producer’s accu-
racy (83% to 89%) and excellent user’s accuracy (97%) for saltcedar. In comparison, SAM had a
lower producer’s accuracy (78%) and a similar user’s accuracy (97%) to the other five classifiers.

Table 2 summarizes the accuracy assessment results for the classification maps generated
from the MNF images based on the six classifiers for site 2. Overall accuracy for 2003 ranged
from a low of 60% for SAM to a high of 76% for SVM. Compared with site 1, site 2 had lower

Table 1 Accuracy assessment results for classification maps generated from minimum noise
fraction (MNF) images based on six classification methods for site 1.

Year Classifiera

Overall
accuracy

(%)
Overall
kappa

Producer’s accuracy (PA, %) and user’s accuracy (UA, %)

Saltcedar Mesquite Grass
Soil/sparse
herbaceous

PA UA PA UA PA UA PA UA

2003 MD 79.0 0.718 63.4 96.3 94.4 50 91.7 91.7 82.4 93.3

MAHD 71.0 0.597 73.2 81.1 61.1 40.7 91.7 84.6 47.1 80.0

ML 75.0 0.663 61.0 92.6 77.8 53.9 91.7 75.9 82.4 77.8

SAM 76.0 0.683 56.1 100.0 83.3 42.9 87.5 100.0 100.0 81.0

MTMF 76.0 0.672 68.3 90.3 66.7 57.1 91.7 71.0 82.4 82.4

SVM 86.0 0.805 87.8 92.3 77.8 70.0 91.7 84.6 82.4 93.3

2004 MD 86.0 0.805 87.8 97.3 77.8 73.7 95.8 76.7 76.5 92.9

MAHD 89.0 0.847 87.8 97.3 77.8 87.5 95.8 82.1 94.1 84.2

ML 87.0 0.821 82.9 97.1 72.2 86.7 95.8 82.1 100.0 77.3

SAM 80.0 0.728 78.1 97.0 72.2 50.0 75.0 94.7 100.0 77.3

MTMF 89.0 0.848 85.4 97.2 72.2 86.7 100.0 82.8 100.0 85.0

SVM 90.0 0.861 90.2 97.4 72.2 81.3 100.0 88.9 94.1 84.2

aMD ¼ minimum distance, MAHD ¼ Mahalanobis distance, ML ¼ maximum likelihood, SAM ¼ spectral angle
mapper, MTMF ¼ mixture tuned matched filtering, and SVM ¼ support vector machine.
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Table 2 Accuracy assessment results for classification maps generated from MNF images based
on six classification methods for site 2.

Year Classifiera

Overall
accuracy

(%)
Overall
kappa

Producer’s accuracy (PA, %) and user’s accuracy (UA, %)

Dense
saltcedar

Sparse
saltcedar Mixed woody

Mixed
cover

PA UA PA UA PA UA PA UA

2003 MD 70.0 0.569 73.0 75.0 70.3 70.3 42.9 75.0 91.7 57.9

MAHD 74.0 0.615 83.8 86.1 81.1 66.7 42.9 85.7 58.3 58.3

ML 72.0 0.603 78.4 82.9 67.6 73.5 50.0 58.3 91.7 57.9

SAM 60.0 0.411 48.7 90.0 81.1 50.0 35.7 83.3 58.3 50.0

MTMF 73.0 0.613 81.1 88.2 73.0 71.1 42.9 66.7 83.3 52.6

SVM 76.0 0.644 91.9 85.0 78.4 69.1 42.9 85.7 58.3 63.6

2004 MD 85.0 0.787 94.6 87.5 75.7 96.6 85.7 70.6 83.3 71.4

MAHD 82.0 0.745 83.8 91.2 81.1 88.2 78.6 57.9 83.3 76.9

ML 89.0 0.845 94.6 100.0 83.8 96.9 92.9 72.2 83.3 66.7

SAM 77.0 77.0 81.1 93.8 82.4 70.0 56.3 75.0 76.9 62.5

MTMF 79.0 0.700 86.5 94.1 81.1 83.3 100.0 53.9 25.0 75.0

SVM 91.0 0.872 100.0 100.0 83.8 96.9 92.9 76.5 83.3 71.4

aMD ¼ minimum distance, MAHD ¼ Mahalanobis distance, ML ¼ maximum likelihood, SAM ¼ spectral angle
mapper, MTMF ¼ mixture tuned matched filtering, and SVM ¼ support vector machine.

Table 3 Kappa analysis results (Z -statistic) for pairwise comparisons among six classification
maps generated from MNF images for site 1.

Year Classifier MDa MAHD ML SAM MTMF

2003 MAHD 1.48

ML 0.70 −0.78

SAM 0.46 −1.03 −0.25

MTMF 0.58 −0.88 −0.11 0.13

SVM −1.20 −2.65b −1.89 −1.67 −1.76

2004 MAHD −0.66

ML −0.24 0.42

SAM 1.08 1.74 1.32

MTMF −0.66 −0.01 −0.43 −1.75

SVM −0.88 −0.23 −0.65 −1.97b −0.22

aMD ¼ minimum distance, MAHD ¼ Mahalanobis distance, ML ¼ maximum likelihood, SAM ¼ spectral angle
mapper, MTMF ¼ mixture tuned matched filtering, and SVM ¼ support vector machine.

bSignificantly different between the two classifications at the 0.05 level (Z ≥ 1.96). The negative sign indicates
that the classifier on the left is better than the one on the top.
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overall accuracy among the six classifiers. This was partially due to the confusion between dense
saltcedar and sparse saltcedar. For 2004, SVM provided the highest overall accuracy (91%),
followed by maximum likelihood (89%), minimum distance (85%) and MAHD (82%).
SAM (77%) and MTMT (79%) had similar overall accuracy, but lower than the other classifiers.
Again, the 2004 imagery provided better classification results than the 2003 imagery for site 2,
partially due to the difference in imaging dates.

Tables 3 and 4 give the Kappa analysis results for pairwise comparisons among the six clas-
sification maps for sites 1 and 2, respectively. For site 1, SVM was significantly better than
MAHD in 2003 and SAM in 2004, but there were no other significant differences among
the classifiers. For site 2, SVM was significantly better than SAM in 2003 and SAM and
MTMF in 2004. Moreover, MAHD and maximum likelihood were significantly better than
SAM in 2003 and ML was significantly better than SAM and MTMF in 2004. These results

Table 4 Kappa analysis results (Z -statistic) for pairwise comparisons among six classification
maps generated from MNF images for site 2.

Year Classifier MDa MAHD ML SAM MTMF

2003 MAHD −0.51

ML −0.38 0.14

SAM 1.67 2.19b 2.07b

MTMF −0.49 0.02 −0.12 −2.19b

SVM −0.83 −0.32 −0.47 −2.53b −0.35

2004 MAHD 0.57

ML −0.88 −1.45

SAM 1.47 0.90 2.35b

MTMF 1.17 0.59 2.07b −0.32

SVM −1.34 −1.90 −0.47 −2.80b −2.53b

aMD ¼ minimum distance, MAHD ¼ Mahalanobis distance, ML ¼ maximum likelihood, SAM ¼ spectral angle
mapper, MTMF ¼ mixture tuned matched filtering, and SVM ¼ support vector machine.

bSignificantly different between the two classifications at the 0.05 level (Z ≥ 1.96). The negative sign indicates
that the classifier on the left is better than the one on the top.

Table 5 Change detection statistics in terms of area (ha) between two classification maps based
on support vector machine (SVM) for site 1.

Initial state (2003)

Class Saltcedar Mesquite Grass
Soil/sparse
herbaceous Row total

Final state (2004) Saltcedar 17.1 4.6 4.4 0.1 26.2

Mesquite 1.7 7.2 0.6 1.3 10.8

Grass 1.4 2.9 11.7 0.6 16.6

Soil/sparse herbaceous 0.0 2.4 0.4 6.7 9.5

Column total 20.2 17.1 17.1 8.7

Class change 3.1 9.9 5.4 1.9

Image difference 6.0 −6.3 −0.5 0.8
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indicate that even though SVM performed better in most cases, most of the classifiers were
similar. It is always a good practice to compare multiple classifiers so that best classifiers
can be selected.

Tables 5 and 6 present the change detection statistics between the two best SVM-based clas-
sification maps for sites 1 and 2, respectively. The estimated area for saltcedar was 20.2 ha in
2003 and 26.2 ha in 2004, an increase of 6.0 ha. For the 20.2 ha of saltcedar identified in 2003,
17.1 ha remained to be saltcedar, but 1.7 and 1.4 ha of the saltcedar was classified as mesquite
and grass, respectively, in 2004. Moreover, 4.6 of mesquite, 4.4 ha of grass and 0.1 ha of soil/
sparse herbaceous vegetation identified in 2003 were classified as saltcedar in 2004. Some of
these class changes were attributed to the natural changes of the classes, while some were simply
due to misclassifications in both years, especially in 2003. For site 2, the estimated area
decreased from 34.3 to 29.5 ha of dense saltcedar and increased from 25.8 to 26.7 ha for sparse
saltcedar. Again, the class changes were attributed to actual changes and misclassifications. It is
not always easy to separate saltcedar from surrounding vegetation and the timing of the image
acquisition is very critical. Change detection results can be affected by the accuracy of the clas-
sification maps. This factor needs to be taken into consideration in interpreting the temporal
changes.

4 Conclusions

The results from this study demonstrate that airborne hyperspectral imagery incorporated with
image transformation and classification techniques can be a useful tool for mapping saltcedar
infestations. Among the six classification methods examined in this study, SVM performed the
best in both years for both sites. The other five classifiers provided good classifications in some
cases, but they were not consistent. Between the two imaging dates, the early December, 2004
imagery provided better classification results than the mid-December, 2003 imagery, indicating
the sensitivity and importance of phenology for saltcedar identification. For better separation, the
imagery should be taken when saltcedar is undergoing the color change, but before it turns to
brown. This unique phenological stage only lasts only three to four weeks in west Texas. The
optimum imaging time may vary from year to year depending on the weather conditions.
Therefore, it is necessary to investigate the possibility to distinguish saltcedar from the time
it starts leafing out to the time it starts defoliating. Hyperspectral imagery in conjunction
with advanced image processing techniques may offer the potential for mapping saltcedar during
other times of the growing season. This study was the first study for evaluating airborne hyper-
spectral imagery for identifying saltcedar in west Texas and provides useful information for
further research on the use of multispectral and hyperspectral imagery for mapping saltcedar
infestations along the Rio Grande.

Table 6 Change detection statistics in terms of area (ha) between two classification maps based
on SVM for site 2.

Initial state (2003)

Class
Dense

saltcedar
Sparse
saltcedar

Mixed
woody

Mixed
cover Row total

Final state (2004) Dense saltcedar 23.7 3.7 1.7 0.4 29.5

Sparse
saltcedar

7.9 16.6 1.1 1.1 26.7

Mixed woody 2.2 3.8 2.8 0.6 9.5

Mixed cover 0.5 1.7 0.2 1.4 3.7

Column total 34.3 25.8 5.8 3.5

Class change 10.6 9.2 3.0 2.1

Image difference −4.8 1.0 3.6 0.2
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